Stochastic Wave Equations with Polynomial Nonlinearity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

On blowup for semilinear wave equations with a focusing nonlinearity

In this paper we report on numerical studies of formation of singularities for the semilinear wave equations with a focusing power nonlinearity utt−∆u = u in three space dimensions. We show that for generic large initial data that lead to singularities, the spatial pattern of blowup can be described in terms of linearized perturbations about the fundamental selfsimilar (homogeneous in space) so...

متن کامل

Nonlinear stochastic wave equations

In this paper we study the Cauchy problem for the semilinear stochastic wave equation (@ 2

متن کامل

Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity

In this paper we study a class of backward stochastic differential equations (BSDEs) of the form dYt = −AYtdt−f0(t, Yt)dt−f1(t, Yt, Zt)dt+ZtdWt, 0 ≤ t ≤ T ; YT = ξ in an infinite dimensional Hilbert space H , where the unbounded operator A is sectorial and dissipative and the nonlinearity f0(t, y) is dissipative and defined for y only taking values in a subspace of H . A typical example is prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2002

ISSN: 1050-5164

DOI: 10.1214/aoap/1015961168